Volume 4, Issue 6, December 2016, Page: 284-288
Bayes Estimation of Topp-Leone Distribution Under Symmetric Entropy Loss Function Based on Lower Record Values
Lanping Li, Department of Basic Subjects, Hunan University of Finance and Economics, Changsha, China
Received: Oct. 9, 2016;       Accepted: Oct. 20, 2016;       Published: Nov. 14, 2016
DOI: 10.11648/j.sjams.20160406.16      View  2609      Downloads  119
Abstract
This paper will study the estimation of parameter of Topp-Leone distribution based on lower record values. First, the minimum variance unbiased estimator and maximum likelihood estimator are obtained. Then the Bayes estimator is derived under symmetric loss function and further the empirical Bayes estimators is also obtained based on marginal probability density of record sample and maximum likelihood method. Finally, the admissibility and inadmissibility of a generally class of inverse linear estimators are also discussed.
Keywords
Admissibility, Bayes and Empirical Bayes Estimators, Record Values, Symmetric Entropy Loss Function
To cite this article
Lanping Li, Bayes Estimation of Topp-Leone Distribution Under Symmetric Entropy Loss Function Based on Lower Record Values, Science Journal of Applied Mathematics and Statistics. Vol. 4, No. 6, 2016, pp. 284-288. doi: 10.11648/j.sjams.20160406.16
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Ghitany M. E., Kotz S., Xie M., 2005. On some reliability measures and their stochastic orderings for the Topp-Leone distribution. Journal of Applied Statistics, 32(7):715-722.
[2]
Al-Zahrani B., 2012. Goodness-of-fit for the Topp-Leone distribution with unknown parameters. Applied Mathematical Sciences, (125-128):6355-6363.
[3]
Sindhua T. N., Saleemb M., Aslama M., 2013. Bayesian Estimation for Topp-Leone Distribution under Trimmed Samples. Journal of Basic and Applied Scientific Research 3(10):347-360.
[4]
Al-Zahrani B., Alshomrani A., 2012. Inference on stress-strength reliability from Topp-Leone distributions. Journal of King Abdulaziz University-Science, 24(1):73-88.
[5]
Bayoud H. A., 2015. Estimating the shape parameter of the Topp–Leone distribution based on Type I censored samples. Applicationes Mathematicae, 42(2):219-230.
[6]
Feroze N., Aslam M., Saleem M., 2013. Statistical properties of two component mixture of Topp Leone distribution under a Bayesian approach. International Journal of Intelligent Technologies & Applied Statistics, 6(3):403-404.
[7]
El-Sayed M. A., Abd-Elmougod G. A., Abdel-Rahman E. O., 2015. Estimation for coefficient of variation of Topp-Leone distribution under adaptive Type-II progressive censoring scheme: Bayesian and non-Bayesian approaches. Journal of Computational & Theoretical Nanoscience, 12(11):4028-4035.
[8]
El-Sayed M. A., Abd-Elmougod G. A., Abdel-Khalek S., et al., 2013. Bayesian and non-Bayesian estimation of Topp-Leone distribution based lower record values. 45(2):133-145.
[9]
Chandler K. N., 1952. The distribution and frequency of record values, Journal of the Royal Statistical Society B, 14(2):220-228.
[10]
Raqab M. Z., 2002. Inferences for generalized exponential distribution based on record statistics. Journal of Statistical Planning & Inference, 104(2):339-350.
[11]
Soliman A. A, Ellah A. H. A., Sultan K. S., 2006. Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches. Computational Statistics & Data Analysis, 51(3):2065-2077.
[12]
Jaheen Z. F., 2003. A Bayesian analysis of record statistics from the Gompertz model. Applied Mathematics & Computation, 145(2):307-320.
[13]
Ahmadi J., Doostparast M., Parsian A., 2005. Estimation and prediction in a two-parameter exponential distribution based on k-record values under LINEX loss function. Communication in Statistics-Theory and Methods, 34(4): 795-805.
[14]
Amin E. A., 2012. Bayesian and non-Bayesian estimation from type I generalized logistic distribution based on lower record values, Journal of Applied Sciences Research, 2012(1):118-126.
[15]
Selim M. A., 2012. Bayesian estimations from the two-parameter bathtub-shaped lifetime distribution based on record values, Pakistan Journal of Statistics & Operation Research, 8(2):155-165.
[16]
Zakerzadeh H., Jafari A. A., 2015, Inference on the parameters of two Weibull distributions based on record values, Statistical Methods & Applications, 24(1):25-40.
[17]
Arabi B. R., Arashi M., Tabatabaey S., 2014. Improved confidence intervals for the scale parameter of Burr XII model based on record values. Computational Statistics, 29(5): 1153-1173.
[18]
Barranco-Chamorro I., Moreno-Rebollo J. L., Jiménez-Gamero M. D., Alba-Fernández M. V., 2015. Estimation of the sample size based on record values. Mathematics & Computers in Simulation, 55(118): 58-72.
[19]
Algamal Z. Y., 2016. Using maximum likelihood ratio test to discriminate between the inverse Gaussian and Gamma distributions, International Journal of Statistical Distributions, 1 (1): 27-32.
[20]
Du Y. J., Sun X. X., 2007. Estimation of scale parameter of normal distribution under q-Symmetric entropy loss function. Journal of Jilin University, 45(5):39-43.
[21]
Bayoud H. A., 2015. Admissible minimax estimators for the shape parameter of Topp–Leone distribution. Communication in Statistics-Theory and Methods, 45(1):71-82.
[22]
Zakerzadeh H., Zahraie S. H. M., 2015. Admissibility in non-regular family under squared-log error loss. Metrika, 78(2): 227-236.
[23]
Cao, M. X., Kong, F. C., 2013. General admissibility for linear estimators in a general multivariate linear model under balanced loss function. Acta Mathematica Sinica, 29(29): 1823-1832.
[24]
Arnold, B. C., Balakrishnan, N., Nagaraja, H. N., 1998. Records. New York: John Wiley & Sons.
[25]
Zhao S., Song Y., Song L., et al., 2007. Estimation of ordered means of two sample exponential distributions under symmetric entropy loss. Journal of Jilin University, 45(1):44-48.
Browse journals by subject