Volume 4, Issue 6, December 2016, Page: 298-302
Existence of Coupled Solutions of BVP for ϕ-Laplacian Impulsive Differential Equations
Xiufeng Guo, College of Sciences, Hezhou University, Hezhou, China
Received: Nov. 4, 2016;       Accepted: Nov. 25, 2016;       Published: Dec. 14, 2016
DOI: 10.11648/j.sjams.20160406.18      View  2517      Downloads  64
Abstract
In this paper, we study the existence of coupled solutions of anti-periodic boundary value problems for impulsive differential equations with ϕ-Laplacian operator. Based on a pair of coupled lower and upper solutions and appropriate Nagumo condition, we prove the existence of coupled solutions for anti-periodic impulsive differential equations boundary value problems with ϕ-Laplacian operator.
Keywords
Boundary Value Problems, Coupled Solutions, Impulsive Differential Equations, ϕ-Laplacian Operator
To cite this article
Xiufeng Guo, Existence of Coupled Solutions of BVP for ϕ-Laplacian Impulsive Differential Equations, Science Journal of Applied Mathematics and Statistics. Vol. 4, No. 6, 2016, pp. 298-302. doi: 10.11648/j.sjams.20160406.18
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
C. Ahn, C. Rim, Boundary flows in general coset theories, J. Phys. A 32 (1999) 2509-2525.
[2]
D. Bainov, V. Covachev, Impulsive Differential Equations With a Small Parameter, World Scientific, Singapore, 1994.
[3]
M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corparation, New York, 2006.
[4]
H. L. Chen, Antiperiodic wavelets, J. Comput. Math. 14 (1996) 32-39.
[5]
A. Cabada, D. R. Vivero, Existence and uniqueness of solutions of higher-order antiperiodic dynamic equations, Adv. Difference Equ. 4 (2004) 291-310.
[6]
A. Cabada, The method of lower and upper solutions for periodic and anti-periodic difference quations, Electron. Trans. Numer. Anal. 27 (2007) 13-25.
[7]
A. Cabada, An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl.(2011)18. Art. ID 893753.
[8]
Y. Chen, J. J. Nieto, D. O’Regan, Anti-periodic solutions for fully nonlinear first-order differential equations, Math. Comput. Model. 46 (2007) 1183-1190.
[9]
Y. Chen, J. J. Nieto, D. O’Regan, Anti-periodic solutions for evolution equations associated with maximal monotone mappings, Appl. Math. Lett. 24 (2011) 302-307.
[10]
E. N. Dancer. On the Dirichlet problem for weakly non-linear elliptic partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A, 76 (1977) 283-300.
[11]
F. J. Delvos, L. Knoche, Lacunary interpolation by anti-periodic trigonometric polynomials, BIT 39 (1999) 439-450.
[12]
X. Guo, L. Lu, Z. Liu, BVPs for higher-order integro-differential equations with ϕ-Laplacian and functional boundary conditions, Adv. Differ. Equa. 2014:285 (2014) 1-13.
[13]
H. Kleinert, A. Chervyakov, Functional determinants from Wronski Green function, J. Math. Phys. 40 (1999) 6044-6051.
[14]
V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[15]
S. P. Lu, Periodic solutions to a second order -Laplacian neutral functional differential system, Nonlinear Anal. 69 (2008) 4215-4229.
[16]
Z. Luo, J. J. Nieto, New results of periodic boundary value problem for impulsive integro-differential equations, Nonlinear Anal. 70 (2009) 2248-2260.
[17]
H. Okochi, On the existence of periodic solutions to nonlinear abstract parabolic equations, J. Math. Soc. Japan 40(3) (1988) 541-553.
[18]
K. Perera, R. P. Agarwal, D. O’Regan, Morse Theoretic Aspects of -Laplacian Type Operators, American Mathematical Society, Providence, Rhode Island, 2010.
[19]
W. Wang, J. Shen, Existence of solutions for anti-periodic boundary value problems, Nonlinear Anal. 70 (2009) 598-605.
[20]
R. Wu, The existence of -anti-periodic solutions, Appl. Math. Lett. 23 (2010) 984-987.
[21]
M. P. Yao, A. M. Zhao, J. R. Yan, Anti-periodic boundary value problems of second order impulsive differential equations, Comp. Math. Appl. 59 (2010) 3617-362.
[22]
X. F. Guo, Y. Gu, Anti-periodic Boundary Value Problems of -Laplacian Impulsive Differential Equations, Appl. Comput. Math. 5(2) (2016) 91-96.
[23]
A. Cabada, J. Tomecek, Extremal solutions for nonlinear functional ϕ-Laplacian impulsive equations, Nonlinear Anal. 67(2007)827-841.
[24]
M. Wang, A. Cabada, J. J. Nieto, Monotone method for nonlinear second order periodic boundary value problems with Caratheodory functions, Ann. Polon. Math. 58(3) (1993) 221-235.
[25]
J. F. Xu, Z. L. Yang, Positive solutions for a fourth order -Laplacian boundary value problem, Nonlinear Anal. 74 (2011) 2612-2623.
Browse journals by subject